Doped Graphene as Non-Metallic Catalyst for Fuel Cells
نویسندگان
چکیده
منابع مشابه
Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts
Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...
متن کاملFacile Synthesis of Polypyrrole/Graphene Nanosheet-based Nanocomposites as Catalyst Support for Fuel Cells
The integration of catalyst metals into the graphene-based composites can be a new way to ensure thermal and electronic conductivities of the catalyst support materials in polymer electrolyte membrane fuel cells. In this work, graphene nanosheets were synthesized via a mild and safer chemical route including three major steps: graphite oxidation, ultrasonic treatment and chemical reduction. The...
متن کاملpreparation of nitrogen-doped graphene by solvothermal process as supporting material for fuel cell catalysts
development of efficient electrocatalysts for oxygen reduction reaction (orr) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. the introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. in this work, nitrogen-doped graphene (ng) was synthesized by a ...
متن کاملNitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.
Nitrogen-doped graphene (N-graphene) was synthesized by chemical vapor deposition of methane in the presence of ammonia. The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction via a four-electron pathway in alkaline fuel cells. To ...
متن کاملCatalytic Mechanisms of Sulfur-Doped Graphene as Efficient Oxygen Reduction Reaction Catalysts for Fuel Cells
Density functional theory (DFT) was applied to study sulfur-doped graphene clusters as oxygen reduction reaction (ORR) cathode catalysts for fuel cells. Several sulfurdoped graphene clusters with/without Stone−Wales defects were investigated and their electronic structures, reaction free energy, transition states, and energy barriers were calculated to predict their catalytic properties. The re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Science
سال: 2017
ISSN: 2029-7289,1392-1320
DOI: 10.5755/j01.ms.23.2.16216